
 
o
~

FPCM-9 (2008) 
The 9th International Conference on Flow Processes in Composite Materials 
M ntréal (Québec), Canada 
8  10 July 2008 

 

BUBBLE FORMATION AND MOTION IN NON-CRIMP 
FABRICS WITH PERTURBED BUNDLE GEOMETRY  

 
T. Staffan Lundström

1
, Vilnis Frishfelds

2, 3
, Andris Jakovics

2

 
1 Division of fluid dynamics, Luleå University of Technology, SE-971 87, Luleå, Sweden 

2 
University of Latvia, Zellu 8, Riga LV-1002, Latvia 

3 Corresponding author’s Email:  frishfelds@latnet.lv 
 

 
SUMMARY: The behaviour of the fluid front during impregnation of non-crimp fabrics has 
been considered. Particular attention is paid to creation of bubbles at the fluid front and a virtual 
3D model mimicking biaxial fabrics has been build for this purpose. The saturated fluid flow is 
governed by Navier-Stokes Equations and Darcy law while capillary pressure has been accounted 
for at the fluid flow front. Continuity is furthermore preserved. The influence of perturbation in 
the bundle geometry has been investigated where it turns out that local correlations of dimensions 
of neighbouring gaps formed between the bundles are of highest importance. Focus is set on 
inter-bundle bubbles, where a previously built model for bubble dynamics is used based on a 
probabilistic approach for bubbles moving, slitting, merging, dying, and shaping. The obtained 
void fractions of inter-bundle bubbles at different levels of vacuum applied at the liquid flow 
front is compared to those from real mouldings with rather good conformity. 
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INTRODUCTION 
 
In non-crimp fabrics the fibers are collected in straight bundles being placed parallel in layers that 
are stitched together to form a strong reinforcement [1]. The geometrical result is a porous 
medium having dual scale porosity. The flow generated during impregnation therefore takes 
place on at least two scales, the fiber scale 0.01 mm and the fiber bundle scale 0.1 mm. At the 
wetting front the higher capillary forces together with the larger resistance to flow within the 
bundles thus compete with the lower resistance to flow and lower capillary forces in the inter 
bundle channels. This suggests that the leading front can be in the small intra bundle channels as 
well as in the large inter bundle channels [2] while in the part that is impregnated the velocity of 
the liquid resin in the inter bundle channels is orders of magnitude higher than the velocity within 
the bundles. There is also a natural variation in the distribution of the fibers within a bundle 
implying that the velocity can vary a lot within a fiber bundle, as well, at the wetting flow front and 
in the bulk. The fiber bundles in their turn are often assembled in an organized way by stitching 



techniques but their exact positions will deviate from a perfect pattern due to statistical variations 
and manufacturing induced flaws. Hence also the averaged velocity in the inter bundles channels 
will vary as a function of spatial coordinate. All in all, we may anticipate an inhomogeneous flow 
front on several scales and thus a large risk for air to be entrapped. Once being formed the transport 
of the bubbles during processing has a large influence on the distribution of voids in the final 
composite. During processing, enclosed gas (or volatile components in the resin) may move as 
bubbles or dissolve into the resin as molecules. One evidence of such transports was reported in 
[3] were laminates with different lengths were manufactured at identical processing conditions 
and by letting the resin flow from one side of the mold to the other in an overall parallel flow. 
Studies of micrographs showed that the leading liquid flow front was followed by a fully 
saturated flow front where the latter had a somewhat lower speed. It is well known that the 
quality of composites made by RTM are highly improved when, during the impregnation, the 
inlet driving pressure is assisted by a reduced pressure (vacuum) on the outlet side of the mold [3, 
4]. This positive result can be explained by assuming that bubbles are formed at the liquid flow 
front. Then, a lower pressure at the flow front makes less air available to be entrapped resulting in 
smaller bubbles in the liquid resin as compared to an impregnation without vacuum assistance. 
Other methods to improve the quality is to impregnate the fabric at an optimal capillary number 
[5], avoid dry spots [6], apply a pressure on the resin after filling [3, 7] and use matching material 
combinations [3].  
 
We will here present a model for the formation and transport of bubbles during impregnation of 
non-crimp fabrics. The work is based on a series of papers published regarding transport of 
bubbles and the flow through the part of the fabric already impregnated. Numerical description of 
motion of fluid front and creation of bubbles behind the front is a challenging task in 
impregnation of composite materials because of the rather complicated arrangement of the fibers 
as described above. At a glance the fiber structure looks organized but there are high local 
perturbations which change notably the permeability of fabrics [8]. Moreover, previous studies 
have shown that spatial correlations of local perturbations of bundle arrangement are of 
significant importance for the detailed flow. Perturbations exist both in fiber arrangement in the 
bundles and also in bundle arrangement in the fabrics. In the current paper this latter influence 
will be discussed in the context of bubble creation at the fluid front. 
 

 
 

Fig. 1  Distribution of gap size (colour) and associated permeability (white). 



NUMERICAL MODEL 
 
A 3D numerical model is built for the impregnation of non-crimp fabrics. The model is based on 
a network model previously developed for fully impregnated fabrics [8] but by now also 
considering the flow through the bundles. The system is divided into an arbitrary number of 
layers each having an arbitrary primary orientation. It could, for instance be layers of biaxial or 
triaxial fabrics. Periodic boundary conditions are assumed in the direction normal to the layers, 
i.e., uppermost and lowermost layer are assumed to be laid side by side. The perturbed local 
positions of the fibre bundles are obtained by a Monte Carlo method [8] taking into account 
typical correlation parameters of the real fabrics obtained by an automatic recognition technique 
[9]. One result of this is that the gap size changes considerably throughout the fabrics, as 
exemplified in Fig. 1. One example of a top view that has been used to obtain the numerical 
shape of biaxial fabrics is illustrated in Fig. 2 where the two uppermost layers are shown. For the 
numerical modelling the bundles and gaps are furthermore divided into smaller elements with a 
length equal to average spacing of the bundles in the layer. It is moreover assumed that the cross-
section of the channels has a parabolic shape as shown in the right-bottom corner of Fig. 2. In 
addition, biaxial fabrics have threads going through appropriate gaps and possible crossing fibres 
moving from one bundle to another as indicated in Fig. 2. It is assumed that all bundles have an 
equal shape and any perturbations in the fibre structure within the bundle are neglected.  
 

 
 

Fig. 2  Fragment of the top view of finite volumes of bundles and gaps in the perturbed biaxial 
fabrics with two uppermost layers. Threads and possible crossings are showed by small 

rectangles and stars, respectively. Typical cross-section of the bundle is shown at right-bottom 
corner. 

 
As the speed of impregnation is extremely low Darcy flow is assumed in the load. Dynamic 
viscosity η is approximated as linearly dependent on volume fraction c of liquid at that position: 
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where v is flow of the mixture, K –permeability, P – pressure, ηliq, ηgas are the dynamic viscosity 
in the pure liquid and gas and notice that the orientation of the fabric with respect to the pressure 
gradient can be arbitrary. Because the dynamic viscosity in gases generally is much smaller than 
in liquids, the resulting pressure variation in the gaseous phase is negligible. The values of the 
permeability in the elementary gaps are taken from 3D CFD calculations performed in [10] of the 
full Navier-Stokes Equations. These values depend on gap size, gap shape, layer spacing, 
presence or absence of thread or crossing at that place. The permeability inside the bundle 
depends primarily whether the flow is longitudinal ( ), i.e., in parallel to fibres or perpendicular 
to them ( ). Usually it is much higher in the longitudinal case. These permeabilities are taken 
from unperturbed solutions from hexagonal packing [11]: 
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where Π is the fibre volume fraction in the bundle, ( )32max π=Π  – maximal volume fraction 
in the bundle, rp – radius of the fibres. By no doubt perturbation in the fibre geometry largely 
influence both the permeability and the creation of bubbles especially within the bundles but this 
effect is neglected in this paper. The approximation of an additional pressure, the capillary 
pressure at liquid-gas interface is approximated by: 
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where σLG is surface tension of the liquid-gas interface, θ - contact angle at the fibres. This 
quantity acts as a wetting force which helping the impregnation of the interior of the bundles. 
However, if the size of the fibres is as small as about 7 μm in radius then the wetting phase 
extends over several cells and the here used algorithms do not work well and additional 
considerations should be included [12]. A more detailed description of the liquid-gas interface 
inside the fibre bundles and around bubbles is presented in [13] by a lattice-gas analysis. The 
solution of the pressure in Eq. (1) is obtained by a 3D finite volume method. The elements have 
utmost 4 neighbours within the layer and an arbitrary number in the layers above and below. The 
transport to the neighbouring layers is calculated based both on the area of the contact face and 
the position. The concentration at faces of finite volumes is taken into account, too, in addition to 
the average concentration of the finite volume. 
 
The liquid transport is derived from the fluxes (1) and the concentration at the element interfaces: 
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where diffusive transport is currently neglected. Air inclusions formed at the fluid front are 
treated as bubbles. There could be both inter-bundle and intra-bundle bubbles. The transport of 
the first type is determined by the Monte-Carlo method developed in [14]. Here, the bubbles 
jump from one inter-bundle site to a neighbouring one is based on transition probability. The 
transition probability is assumed to depend on bubble radius, fluxes in respective directions and 
cross-sectional size and shape also in respective directions. The bubble volume Vb is calculated 
by Clausius-Clapeyron law with known molar amount ν of gas inclusion: 



const
PVb =
ν

.      (5) 

Thus, the size of the bubble decreases as the front moves ahead because of increasing pressure 
that helps to move the bubble. Additionally, splitting of large bubbles and joining of bubbles is 
accounted for. Usually, the smaller bubbles move approximately as fast as the fluid front. Hence, 
there is high probability that they will reach fluid front not long after their appearance. The 
situation is different for bubbles that can be trapped in some of the constrictions in the 
reinforcement and reside there for a while. 
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Fig. 3  Left: travelled distance (solid) of the fluid front and square root law (dotted) vs. time. 
Right: pressure (in [Pa]) on both sides of the impregnation front at the beginning. 

 

EXAMPLES OF MOTION OF FLUID FRONT AND CREATION OF BUBBLES FOR 
SMALL WETTING FORCE 

 
A system of oriented bundles with slight perturbation in each layer is now constructed in order to 
model a bi-axial fabric. For the simulations constant pressure values are assumed at the inlet and 
at the outlet of the system. The side walls are assumed as being isolated and no fluid can thus go 
through. The distance travelled by the fluid front is approximately proportional to the square root 
of time as shown in Fig. 3 left, because the pressure gradient decreases with time at fixed 
pressures of the inlet and outlet [12]. Small deviations from this law can occur because of 
perturbations and additional capillary pressure at the fluid front. The pressure distribution is 
shown in Fig. 3 right at the beginning of the impregnation. Of course, practically all of the 
pressure is lost over the fluid part of the system. A typical development of the fluid front that 
travel by the pressure gradient and the jumping of inter-bundle bubbles behind the fluid front are 
shown in Fig. 4. Simulations showed that common places of inter-bundle bubble trapping are at 
the edges, in small gaps and at crossings and threads. The fluid front moves faster in larger gaps 
implying that the capillary pressure is of less importance in these simulations. 
 
Simulations showed that the number of intra-bundle bubbles usually exceeds the number of inter-
bundle bubbles. However, the intra-bundle bubbles are much smaller in size and molar amount of 
gas is much less than inside the inter-bundle bubbles. The typical development of bubble count 
and their molar amount is shown in Fig. 5. The amount of bubbles is nearly the largest when fluid 
front reaches the output and least pressure gradient is achieved. Some of the trapped inter-bundle 



bubbles starts to move only period after the fluid front have crossed the output. The molar 
amount of gas in bubbles varies more slowly because the largest contribution comes from large 
trapped bubbles and the fact that molecular transport of gas is currently absent in the model. 
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Fig. 4  Development of flow front as it moves upwards in the figure and jumping of formed 
bubbles behind the fluid front as blue circles. The upper two layers in the stack are shown. 

 
 
 

 
Fig. 5  Change of inter-bundle bubble count (quickly changing) and their amount in moles 

(slowly changing) during impregnation in small 4 cm × 5 cm system. 
 
 
The profiles of void volume have been studied also experimentally [3] for a kind of unidirectional 
non crimp fabrics where most of the fibres are laid in straight bundles while a fraction of them is 
used to weave these bundles together (see Fig. 6). The major outcome of the experimental studies 
was that void fraction can be significantly reduced by reducing the pressure of outlet. 
 
The same situation is now studied numerically for a bi-axial non-crimp by also reducing the 
pressure gradient to 0.25 MPa. Therefore, the void fraction of inter-bundle voids is reduced and 
the size of the plateau of significant void fraction is reduced. It must also be noticed that only the 
interbundle voids are considered and that the detailed geometry of the two fabrics studies differs. 
Still the model seems to capture the main mechanisms. Also, the small tail near the inlet occurs 
because the molecular transport of gas is currently absent in the model and trapped bubbles could 
stay for long. The characteristic positions of the voids are shown in Fig. 8. The flow is from the 
bottom to the top. 



CONCLUSIONS 
 
A 3D numerical model has been built for study of fluid front, creation of bubbles and bubble 
dynamics during impregnation of non-crimp fabrics. Elementary permeabilities through cell 
interfaces are included from independent approximations. It could be useful in study of quality of 
impregnating fabrics after impregnation. Currently only the inter-bundle voids are strictly 
considered. Numerical calculations showed that common places of intra-bundle bubble creation 
are tiny gaps between the bundles, crossings, threads, and side walls of the system. Numerical 
calculations confirmed experimental investigations that the remaining void fraction can be 
reduced by vacuum assistance at the outlet which is in agreement with experimental results. 

 
Fig. 6  Experimental void volume profiles [3] along the laminate centreline for a unidirectional 
fabric (Brochier Lyvertex 21130). Distance x is measured from the inlet towards the outlet. The 
pressure difference between inlet and outlet was 0.5 MPa and the outlet pressure was held at 0.1 

MPa, 0.05 MPa, 0.01 MPa, and ≈ 0.001 MPa. 
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Fig. 7  Percentage of inter-bundle voids when fluid front has just passed the outlet. The pressure 
gradient was twice higher than in experiments in Fig. 6. 

 



 

 
 

Fig. 8  Placement of inter-bundle bubbles in perturbed fabric when fluid front has just passed the 
outlet. Only the two uppermost layers of four are shown. Top: exit pressure is 0.1 MPa, bottom: 

exit pressure 0.01 MPa. 
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